技事録係

IT中心にエンジニアに必要な技術情報・最新動向・資格試験対策等を記録

QC検定3級 統計的方法の基礎②

◀︎ 前へ次へ ▶︎️

 確率分布に関する次の文章において,   内に入るもっとも適切なものを下欄の選択肢からひとつ選べ。ただし,各選択肢を複数回用いることはない。

① n個の部品を無作為に抽出すると,x個の不適合品が見つかるとすし,1つの部品が不適合品となる確率をPとする。このとき,xは (1) 分布に従うとみなすことができる。ここでn=4のとき,0<P<1ならばxがとりうる値は (2) 通り(種類)あるが,P=0ならばxがとりうる値は (3) 通り(種類)である。

 

② 上記①において,n=3,P=0.2とする。このとき,x=0となる確率は (4) である。次に,x=1となる確率を求める。そのために,部品の抜き取り順序を考えて,3回のうち1回だけが不適合品になるパターンを考える。つまり,x=1となるのは,1回目から3回目のいずれかが不適合品でそれ以外が適合品であり,3パターンある。このうちの1つのパターン,例えば(1回目:不適合品,2回目:適合品,3回目:適合品)となる確率は (5) である。他のパターンとなる確率も同じなのでこれらを加え合わせると,x=1となる確率は (6) である。

 

(1)〜(3)の選択肢
  1. 正規
  2. 二項
  3. 指数
  4. 0
  5. 1
  6. 2
  7. 3
  8. 4
  9. 5
(4)〜(6)の選択肢
  1. 0.008
  2. 0.128
  3. 0.200
  4. 0.384
  5. 0.512
  6. 0.800
  7. 1.000

 

解答

(1) (2) (3)
(4) (5) (6)

解説

① n個の部品を無作為に抽出すると,x個の不適合品が見つかるとすし,1つの部品が不適合品となる確率をPとする。このとき,xは 二項 分布に従うとみなすことができる。ここでn=4のとき,0<P<1ならばxがとりうる値は 5 通り(種類)あるが,P=0ならばxがとりうる値は 1 通り(種類)である。

連続値の分布である正規分布に対し,離散値の分布は二項分布になります。
n=4の場合xは,0個,1個,2個,3個,4個の5通りが考えられます。
P=0ならば,すべて適合品である1通りのみ考えれれます。

 

② 上記①において,n=3,P=0.2とする。このとき,x=0となる確率は 0.512 である。次に,x=1となる確率を求める。そのために,部品の抜き取り順序を考えて,3回のうち1回だけが不適合品になるパターンを考える。つまり,x=1となるのは,1回目から3回目のいずれかが不適合品でそれ以外が適合品であり,3パターンある。このうちの1つのパターン,例えば(1回目:不適合品,2回目:適合品,3回目:適合品)となる確率は 0.128 である。他のパターンとなる確率も同じなのでこれらを加え合わせると,x=1となる確率は 0.384 である。

不適合品となる確率Pが0.2ということは,適合品となる確率は 1 − 0.2 = 0.8 となります。よって,n=3,P=0.2,x=0となる確率は,
 0.8 × 0.8 × 0.8 = 0.512
となります。

また,1回目:不適合品,2回目:適合品,3回目:適合品 となる確率は,
 0.2 × 0.8 × 0.8 = 0.128
いずれか一つが不適合品の確率は,
 0.128 × 3 = 0.384
となります。